Training in the Clinical Use of Single Subject Designs: An Important Strategy for Building an Evidence Base for Clinical Practice

Kurt A. Freeman, Michael A. Harris, Sage N. Saxton, Darryn M. Sikora
Mina Nguyen- Driver, & Darren Janzen
Child Development and Rehabilitation Center
Oregon Health & Science University

BACKGROUND

- The majority of doctoral programs in clinical and counseling psychology are based on training models that emphasize using empirical evidence to guide practice
- Increasing emphasis on use of empirically validated treatments and “evidence based practice”

“Evidence based practice” involves using evidence from research and clinical experience to guide practice
- While relying on clinical experience is important, observational and reporting biases and placebo effects can affect conclusions drawn from clinical experience
- Using methods to document change with patients can be useful

- Most research designs do not lend themselves to use in clinical practice
 - One exception to this is single subject designs (SSD)

- Levels of research
 - Level 1
 - Continuous data collection and documentation of change
 - Level 2
 - Semi-experimental; systematic application of DV, continuous monitoring of IV
 - Level 3
 - Level 2 + replication and generalizability

- SSD can be used to produce any level of research
 - Thus appropriate for explicit research practices and for documenting change with individual patients

- The purpose of this poster is to:
 - Demonstrate how SSD can be used during clinical practice to document change in patient behavior
 - Highlight ways to incorporate training regarding integrating SSD into clinical practice

SSD: DEFINING FEATURES

- Track target over time
 - Clinician or patient data collection
- Compare performance within patient
 - Track behavior before and after start treatment
 - Track behavior as different treatment components are added
- Replication of experimental effect
 - Most important for Level 3 research
- Visually plot data to determine whether change is occurring
 - Level: mean performance within phase
 - Trend: “best fit” line
 - Variability: amount data vary around mean or slope
 - Latency: length before IV demonstrates impact on DV

EXAMPLES OF DATA COLLECTION SYSTEMS

- Frequency
 - Best with discrete behavior & trying to change how often a behavioral event occurs
- Duration
 - Best with behavioral events that tend to last for several moments & goal is to change how long events last
- Product/outcome
 - Measuring the outcome of targeted behavior
- Latency
 - Time between prompt/cue and behavioral event
- Standardized ratings
 - Questionnaires
 - SUDS

USING PRINCIPLES OF SSD IN CLINICAL PRACTICE

- Emphasizing Levels 1 and 2
 - Typically “simply” trying to determine if change is occurring
 - Less interested in demonstrating empirically that IV is responsible for change in DV
- Collaboratively define behavioral event(s) to use as marker of change with patient
- Develop and implement data collection system
 - Trade quality of data for quantity of data
 - Determine what is manageable for patient
- Be prepared to alter data collection system
 - Initial system not feasible or not capturing what is of interest
 - Goals change during course of treatment
- Graph data and share with patient
 - Use graphs to review progress
 - Collaboratively decide whether sufficient progress is occurring based on available data

DESIGN OPTIONS FOR CLINICAL PRACTICE

THE A-B DESIGN

- Quasi-experimental SSD (Level 1 or 2 research)
- “A” Phase
 - Pre-treatment phase (baseline)
 - Obtain several data points
 - Days, blocks of days, weeks, etc
- “B” Phase
 - Treatment phase

THE A-B-C+ DESIGN

- Quasi-experimental SSD (Level 1 or 2 research)
- Sequentially adding additional treatment components; example
 - A = pre-treatment
 - B = relaxation training
 - C = imaginal exposure
 - D = in vivo exposure

MORE RIGOROUS DESIGNS

- Appropriate to use Level 3 research designs in clinical practice
 - A-B-A-B withdrawal design
 - Multiple Baseline Designs

TRAINING THE USE OF SSD IN CLINICAL PRACTICE

- Identify faculty/mentor versed in SSD
 - Look beyond clinical faculty as appropriate
- Emphasize prospective data collection
 - Individual & group supervision
 - Brainstorm strategies for monitoring progress
- Expect data-based case presentations
 - Informally during supervision
 - Formally during case presentations
- As a supervisor, ask for the evidence
 - Teach trainees to be prepared to demonstrate change is occurring
- Read studies using SSD (e.g., journal clubs)
- Encourage submission of data-based case presentations to journals

RESOURCES

Please direct correspondence to:
Kurt A. Freeman, Ph.D.
Child Development & Rehabilitation Center
Oregon Health & Science University
freemaku@ohsu.edu